Exotic physics phenomenon is observed for first time

An exotic physical phenomenon, involving optical waves, synthetic magnetic fields, and time reversal, has been directly observed for the first time, following decades of attempts. The new finding could lead to realizations of what are known as topological phases, and eventually to advances toward fault-tolerant quantum computers, the researchers say. The new finding involves the … Read more

Scientists succeed in measuring electron spin qubit without demolishing it

A group of scientists from the RIKEN Center for Emergent Matter Science in Japan have succeeded in taking repeated measurements of the spin of an electron in a silicon quantum dot (QD), without changing the spin in the process. This type of “non-demolition” measurement is important for creating quantum computers that are fault tolerant. Quantum … Read more

Watching magnetic nano ‘tornadoes’ in 3D

The team, from the Universities of Cambridge and Glasgow in the UK and ETH Zurich and the Paul Scherrer Institute in Switzerland, used their technique to observe how the magnetisation behaves, the first time this has been done in three dimensions. The technique, called time-resolved magnetic laminography, could be used to understand and control the … Read more

New green technology from UMass Amherst generates electricity ‘out of thin air’

Scientists at the University of Massachusetts Amherst have developed a device that uses a natural protein to create electricity from moisture in the air, a new technology they say could have significant implications for the future of renewable energy, climate change and in the future of medicine. As reported today in Nature, the laboratories of electrical … Read more

Fragile topology: Two new studies explain the strange electron flow in future materials

Electrons race along the surface of certain unusual crystalline materials, except that sometimes they don’t. Two new studies from Princeton researchers and their collaborators explain the source of the surprising behavior and chart a course for restoring conductivity in these remarkable crystals, prized for their potential use in future technologies including quantum computers. The studies … Read more

Entangled laser beams improve the resolution of gravitational-wave detectors

Quantum noise is a limiting issue in high-precision measurements of gravitational waves. Physicists lead by Prof. Roman Schnabel at the “Quantum Universe” Excellence cluster at the University of Hamburg proved in a test experiment that quantum entanglement of laser light can increase the sensitivity of gravitational-wave observatories. The results of their studies where published in … Read more

Using sound and light to generate ultra-fast data transfer

Researchers have made a breakthrough in the control of terahertz quantum cascade lasers, which could lead to the transmission of data at the rate of 100 gigabits per second – around one thousand times quicker than a fast Ethernet operating at 100 megabits a second. What distinguishes terahertz quantum cascade lasers from other lasers is … Read more

New droplet-based electricity generator: A drop of water generates 140V power, lighting up 100 LED bulbs

Generating electricity from raindrops efficiently has gone one step further. A research team led by scientists from the City University of Hong Kong (CityU) has recently developed a droplet-based energy generator (DEG), featured with a field-effect transistor (FET)-like structure that allows for high energy-conversion efficiency and instantaneous power density increased by thousands times compared to its counterparts … Read more

Breakthrough made on the next big step to building the world’s most powerful particle accelerator

For the first time scientists have observed muon ionization cooling – a major step in being able to create the world’s most powerful particle accelerator. This new muon accelerator will give us a better understanding of the fundamental constituents of matter. Since the 1930s, accelerators have been used to make ever more energetic proton, electron, … Read more

Quantum fluctuations stabilize high-temperature superconductors

An international team of researchers from Spain, Italy, France, Germany, and Japan show that the crystal structure of the record superconducting LaH10 compound is stabilized by nuclear quantum fluctuations. Their result suggests that superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected. The results are published today … Read more